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a b s t r a c t

The problem of simulating pipelines that are used for transporting different fluids is
addressed in the paper. The model of the multi-batch pipeline is obtained by extending
the classical ‘‘water hammer equations’’ (dealing with pressure and velocity of the med-
ium) with fluid density. In such way a system of nonlinear partial differential equations
is derived and solved by the method of characteristics. However, the ordinary differential
equations resulting from the method of characteristics are defined on domains with very
different slopes in the ðx; tÞ space. A heterogenous multiscale method using two grids is
capable of coping with associated numerical problems as shown by comparison of simu-
lated and measured data on a real pipeline.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Real time transient model (RTTM) based leak monitoring systems [1–3] require a sophisticated mathematical model of
the flow in pipelines. The so called ‘‘water hammer equations’’ are relatively simple mathematical models assuming isentro-
pic flow; they are obtained using the principles of mass and momentum conservation [4,5]. These models are based on a one-
dimensional approach for one-phase liquid flow. Up to now, there is no analytical solution for this non-linear, partial differ-
ential equation system available. However, numerical techniques have traditionally been exploited to solve such problems.
Several different approaches exist in the literature for tackling the aforementioned problem. Very often the method of char-
acteristics [6] has been used, other approaches include finite volume [7], finite difference (explicit [8] or implicit [9,10]), fi-
nite element methods [11], polynomial differential quadrature [12], and transfer function modelling [13]. All these methods
represent a part of the field of Computational Fluid Dynamics (CFD). The increased computational power of modern digital
computer has steadily increased the range of possibilities in that field.

Not only RTTM based leak monitoring systems have been widely studied in the recent years, but also a handful of com-
mercial products for RTTM based leak monitoring systems is offered. An excellent literature review of RTTM based leak
detection methods can be found in [14]. It has been shown [15] that water-hammer wave attenuation, shape and timing
parameters may be significantly affected by violating the idealised conditions of the water-hammer equations. Some ap-
proaches also dealt with turbulent flows [16,17] where vaned pipe bends are analysed in [17]. Yet, very little has been pub-
lished on the simulation of multi-batch driven pipelines, where different fluids are transported through the same pipeline. A
simple model of such pipelines was presented in [18].
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The purpose of the present paper is to propose an alternative solution for simulation of multi-batch driven pipelines. This
is achieved by extending the method of characteristic to multi-batch driven pipelines and by applying the heterogenous
multi-scale method for the simulation of equations which are not defined on the same domain.

In Section 2 the simple water hammer equation model will be extended to the case when different fluids are transported
through the same pipeline. This enables the description of multi-product flows with multiple products or batches being
transported at the same time in one pipeline. The same model was used in [18], where the problem was linearised and solved
analytically. In this paper, however, the method of characteristics [6] is applied to the extended model as shown in Section 3.
The ordinary differential equations resulting from the method of characteristics are defined on domains with very different
slopes in the ðx; tÞ space. In order to circumvent this problem, a heterogenous multiscale method using two grids is proposed
in Section 4. This method is capable of coping with associated numerical problems as shown in Section 5 presenting com-
parison of simulated and measured data on a real pipeline.

2. Mathematical model of the pipeline

The classical solution for unsteady flow problems is obtained by using the equations for continuity, momentum and en-
ergy. These equations correspond to the physical principles of mass, momentum and energy conservation. By applying these
equations, a coupled non-linear set of partial differential equations is obtained that is very difficult to solve analytically. To
date, there is no general closed-form solution. Further problems arise in the case of turbulent flow, which introduces sto-
chastic flow behavior. Therefore, the mathematical derivation for the flow through a pipeline is a mixture of both theoretical
and empirical approaches.

The following assumptions for the derivation of a mathematical model of the flow through pipelines are made:

1. Fluid is compressible. Compressibility of fluid results in an unsteady flow.
2. Flow is viscous. Viscosity causes shear stresses in a moving fluid.
3. Flow is adiabatic. No transfer of energy between fluid and pipeline will be considered.
4. Flow is isothermal. Temperature changes due to pressure changes can be neglected for liquids. Under these circumstances,

temperature changes could only be result of friction effects, but these effects will also be neglected. Therefore, the tem-
perature along the pipeline is supposed to be constant.

5. Flow is one-dimensional. All characteristics of the pipeline such as velocity v and pressure p depend only on the x-axis laid
along the pipeline.

Consider now a pipeline of length Lp and with constant diameter

D ¼ DðxÞ ¼ 2R ¼ const: ð1Þ

The continuity equation in conservative form for the one-dimensional case yields [11]

dq
dt
þ q

@v
@x
¼ 0; ð2Þ

with density qðx; tÞ, velocity vðx; tÞ, and with the substantial or total derivative

dq
dt
� @q
@t
þ v @q

@x
: ð3Þ

The Momentum Equation in conservative form for the one-dimensional case yields [11]

q
dv
dt
¼ �qg sina� @p

@x
þ @pL

@x
; ð4Þ

with pressure pðx; tÞ. The quantity g sin a is the x-component of the standard gravity vector g. The pressure loss pL rely on the
shear stress sR. The formula from Darcy and Weisbach [19] states that

@pL

@x
¼ �q

kv j v j
2D

; ð5Þ

with the dimensionless friction coefficient kðvÞ. This equation holds for the laminar flow as well as for the turbulent flow.
Laminar flow is described by [19]

k ¼ kðvÞ ¼ 64
Re
; ð6Þ

if the dimensionless Reynolds number

Re ¼ D
m
� v ð7Þ
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is smaller than 2320 (m is the kinematic viscosity of the fluid). For larger values of the Reynolds number, flow is assumed to
be turbulent. In that case, (6) can be replaced with an appropriately mixed theoretically and empirically derived formula
such as the formula of Colebrook [19]

1ffiffiffi
k
p ¼ �2 log

2:51
Re

ffiffiffi
k
p þ 0:27

kR

D

� �
; ð8Þ

with roughness height kR as a measure of the roughness of commercial pipes. Using Eqs. (4) and (5) we obtain

dv
dt
þ 1

q
@p
@x
þ g sin aþ kv j v j

2D
¼ 0: ð9Þ

Using the definition of the (isentropic) speed of sound a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dq

p
the following equation is obtained

dp ¼ a2dq: ð10Þ

The model of the pipeline is completed by modelling the invariance of fluid properties such as viscosity m and speed of
sound a:

dq
dt
þ q

@v
@x
¼ 0; ð11Þ

dv
dt
þ 1

q
@p
@x
þ g sinaþ kv j v j

2D
¼ 0; ð12Þ

dp
dt
� a2 dq

dt
¼ 0; ð13Þ

da
dt
¼ 0; ð14Þ

dm
dt
¼ 0: ð15Þ

The initial conditions for the above system are pðx; 0Þ, vðx; 0Þ;qðx;0Þ; aðx;0Þ, and mðx;0Þ. In order to solve the above system
of partial differential equations, boundary conditions are also necessary. The first two boundary conditions concern the
knowledge of pressure and/or velocity at the pipeline inlet/outlet. The pressure pð0; tÞ or the velocity vð0; tÞ has to be known
at the pipeline inlet, while one of these two quantities also has to be known at the pipeline outlet. The possible combinations
are therefore: fpð0; tÞ; pðLp; tÞg; fpð0; tÞ; vðLp; tÞg; fvð0; tÞ; pðLp; tÞg, and fvð0; tÞ;vðLp; tÞg. In this paper both pressures will be
known. Furthermore, three boundary conditions for the density, the speed of sound, and the viscosity are needed. Namely,
qð0; tÞ; að0; tÞ, and mð0; tÞ will be used as boundary conditions if vð0; tÞP 0. If, on the other hand, vð0; tÞ < 0, the following
boundary conditions will be known: qðLp; tÞ; aðLp; tÞ, and mðLp; tÞ.

3. Method of characteristics

First, the system of PDEs, represented by Eqs. (11)–(15), will be transformed into the form that is more suitable for the
consequent operations. Note that Eqs. (14) and (15) are independent from Eqs. (11)–(13) in the sense that their solutions do
not depend on solutions of the other three equations. The first three equations are rewritten again by replacing the total
derivatives with the partial ones (dq

dt ¼
@q
@t þ v @q

@x, dv
dt ¼ @v

@t þ v @v
@x, dp

dt ¼
@p
@t þ v @p

@x), by defining a state vector

y ¼
q
v
p

2
64

3
75; ð16Þ

matrices

At ¼
1 0 0
0 1 0
�a2 0 1

2
64

3
75; ð17Þ

Ax ¼
v q 0
0 v 1=q
�a2v 0 v

2
64

3
75 ð18Þ

and a vector

b ¼
0

g sin aþ kvjv j
2D

0

2
64

3
75; ð19Þ
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to come up with the following vector partial differential equation:

At
@y
@t
þ Ax

@y
@x
þ b ¼ 0: ð20Þ

Using the eigenvector transformation of A�1
t Ax

A�1
t Ax ¼

v q 0
0 v 1=q
0 a2q v

2
64

3
75 ¼ HKH�1; ð21Þ

where

H ¼

1
2a2

1
2a2 � 1

a2

1
2aq � 1

2aq 0
1
2

1
2 0

2
664

3
775 ð22Þ

is the matrix of the eigenvectors of A�1
t Ax and

K ¼
v þ a 0 0

0 v � a 0
0 0 v

2
64

3
75 ð23Þ

is the diagonal matrix of the corresponding eigenvalues, the following equation is obtained

H�1 @y
@t
þ KH�1 @y

@x
þH�1A�1

t b ¼ 0; ð24Þ

where

H�1 ¼
0 aq 1
0 �aq 1
�a2 0 1

2
64

3
75; ð25Þ

KH�1 ¼
0 ðv þ aÞaq v þ a

0 �ðv � aÞaq v � a

�va2 0 v

2
64

3
75; ð26Þ

H�1A�1
t b ¼

aq g sin aþ kvjvj
2D

� �
�aq g sin aþ kvjvj

2D

� �
0

2
6664

3
7775: ð27Þ

The vector partial differential Eq. (24) can be rewritten again as a set of scalar partial differential equations:

@p
@t
þ ðv þ aÞ @p

@x

� �
þ aq

@v
@t
þ ðv þ aÞ @v

@x

� �
þ aq g sin aþ kv j v j

2D

� �
¼ 0; ð28Þ

@p
@t
þ ðv � aÞ @p

@x

� �
� aq

@v
@t
þ ðv � aÞ @v

@x

� �
� aq g sin aþ kv j v j

2D

� �
¼ 0; ð29Þ

@p
@t
þ v @p

@x

� �
� a2 @q

@t
þ v @q

@x

� �
¼ 0; ð30Þ

The above set of PDEs is valid on the entire ðx; tÞ space. The solution is quite difficult. The idea of method of characteristics
is that the PDEs are not solved everywhere. Rather, some lines, called characteristics, are defined, and the PDEs are solved
only on these lines. Thus the system of PDEs is transformed into the system of ordinary differential equations (ODE). Three
characteristics are defined for our purposes:

� dx
dt
¼ v þ a, denoted by Cþ,

� dx
dt
¼ v � a, denoted by C�, and

� dx
dt
¼ v , denoted by CF .
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By introducing the above equations in Eqs. (28)–(30), the expressions in the square brackets become total derivatives if
the proper characteristics are taken into account. The substitution yields the following:

dpþ aqdv þ aq g sinaþ kv j v j
2D

� �
dt ¼ 0 ðvalid onCþÞ; ð31Þ

dp� aqdv � aq g sinaþ kv j v j
2D

� �
dt ¼ 0 ðvalid onC�Þ; ð32Þ

dp� a2dq ¼ 0 valid onCF
� �

: ð33Þ

Eqs. (14) and (15) can be rewritten as:

da
dt
¼ @a
@t
þ v @a

@x
¼ 0; ð34Þ

dm
dt
¼ @m
@t
þ v @m

@x
¼ 0; ð35Þ

Since dx
dt ¼ v defines characteristic CF , these two equations are valid only on CF . The system given by Eqs. (31)–(33) is com-

pleted by the following two equations:

da ¼ 0 ðvalid onCFÞ; ð36Þ
dm ¼ 0 ðvalid onCFÞ: ð37Þ

4. The heterogenous multiscale method

The method of characteristics yields five ordinary differential Eqs. 31, 32, 33, 36, 37 for five variables (p;v ;q; a; m). The
problem is that they are not defined on the same domain. Rather, the definition domains of the equations are different. They
are given by the characteristics Cþ;C�, and CF as illustrated in Fig. 1. The only way to solve this system of equations is to solve
it numerically. However due to v � a the slopes ðdt

dxÞ of characteristics Cþ and C� ( 1
vþa and 1

v�a, respectively) are much smaller

than the slope of characteristic CF (1
v). In order to avoid numerical problems two grids are needed.

First we need to choose the temporal resolution Dt which is done based on the system dynamics as in any simulation.
Usually the resolution is selected in the range of a second. The spatial resolution is defined by the characteristics: the steep
characteristics CF (the slope is 1

v) define micro-grid points whereas the characteristics with gradual slope Cþ and C� (the slope
is 1

v�a) define the macro-grid points. But one also needs to have the stability of the algorithm in mind when choosing the
spatial resolution. A necessary condition for the convergence of the studied partial differential equations numerically by
the method of finite differences is the so-called Courant–Friedrichs–Lewy condition [20,21] which states that the mathemat-
ical domain of dependence should be contained in the numerical domain of dependence for each pair ðx; tÞ. When solving the
fast dynamics given by Eqs. (31) and (32), the mathematical domain of dependence is the triangle RSP while the numerical
domain of dependence is the triangle given by the points ði� 1; kÞ; ðiþ 1; kÞ, and ði; kþ 1Þ in Fig. 1. When solving the slow
dynamics given by Eqs. (33), (36), and (37), the mathematical domain of dependence is the triangle TOP while the numerical
domain of dependence is the triangle given by the points ðj� 1; kÞ; ðjþ 1; kÞ, and ðj; kþ 1Þ in Fig. 1. Consequently, in order to

Fig. 1. The characteristics.
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meet the necessary condition for the convergence of numerical results, the characteristics with the most gradual possible
slope are defined. These characteristics are denoted by CF

0;C
þ
0 , and C�0 and are also shown in Fig. 1. These characteristics actu-

ally exactly define the points on both grids. This means that the temporal resolution of the micro-grid dx is defined by the
equation:

Dt
dx
6 min

1
jvj ¼

1
max jv j ) dx P Dt max jv j; ð38Þ

which means that the spatial resolution of the micro-grid points is defined by the maximal expected velocity of the fluid.
Note that the absolute value is used to also include the possibility of the pipeline running in reverse. Similarly, the
macro-grid spatial resolution Dx is defined by the slope of Cþ0 and C�0 (the absolute value of their slope is the same):

Dt
Dx
6

1
max jv j þmax a

) Dx P Dtðmax jv j þmax aÞ; ð39Þ

which means that the spatial resolution of the macro-grid points is defined by the maximal expected velocity of the fluid and
the largest possible sound speed of a medium in multi–batch operation. In order to simplify the numerical calculations, ac-
tual values of both spatial resolutions are obtained by first dividing the length of the pipeline Lp by an appropriate integer
(denoted by Nr) to get the macro-grid resolution Dx, and then dividing the latter by an appropriate integer (denoted by Nf ) to
get the micro-grid resolution dx. In a practical implementation of the algorithm these two integers need to be chosen in
accordance with the following inequalities based on Eqs. (38) and (39):

Nr ¼
Lp

Dx
6

Lp

Dtðmax jv j þmax aÞ ; ð40Þ

Nf ¼
Dx
dx
¼ Lp

Nrdx
6

Lp

NrDt max jv j : ð41Þ

The characteristic Cþ has the slope 1
vþa and intersects the line t ¼ kDt at the point R located at x ¼ ði� nÞDx where

n ¼ ðaþ vÞ Dt
Dx. The characteristic C� has the slope 1

v�a and intersects the line t ¼ kDt at the point S located at x ¼ ðiþ wÞDx
where w ¼ ða� vÞ Dt

Dx. The characteristic CF intersects the line t ¼ kDt at the point T located at x ¼ ðj� fÞdx where
f ¼ v Dt

dx ¼ Nf v Dt
Dx. Due to the inequalities (38) and (39), the resulting n;w, and f always belong to the interval ½0;1�.

The two grids for the spatial variable x characterize a stiff system. So the proposed solution resembles the multiscale
methods for stiff ordinary differential equations [22]. The variables p and v are calculated on the macro-grid, while q; a,
and m on the micro-grid, respectively. Eqs. (31), (32), (33), (36) and (37) can be rewritten in the integral formZ P

R
dpþ

Z P

R
aqdv þ

Z P

R
aq g sinaþ kv j v j

2D

� �
dt ¼ 0; ð42Þ

Z P

S
dp�

Z P

S
aqdv �

Z P

S
aq g sinaþ kv j v j

2D

� �
dt ¼ 0; ð43Þ

Z P

T
dp�

Z P

T
a2dq ¼ 0; ð44Þ

Z P

T
da ¼ 0; ð45Þ

Z P

T
dm ¼ 0: ð46Þ

The basic algorithm for the simulation of multi-batch driven pipelines is given next:

0. Initialise the simulation time (k ¼ 0). Initialise all the macro-grid and the micro-grid variables from the initial condition
of the system. Linear interpolation is used where necessary.
1. Make a simple prediction of micro-grid variables on the time interval ½kDt; ðkþ 1ÞDt� based on the state in the time
instant t ¼ kDt.
2. Determine the slope of the characteristics and the coefficients of the macro-grid equations by averaging the micro-grid
variables.
3. Use the averaged values to solve the macro-grid system on the time interval ½kDt; ðkþ 1ÞDt�.
4. Having actual values of the macro-grid system solution, solve the micro-grid system again.
5. Unless the finish time is reached, increment k and go to step 1.

To simplify the notation, Dx; dx, and Dt will be omitted in the description of the variables, e.g., vðj; kÞ will be used instead
of vðjdx; kDtÞ. Furthermore, V and P will be introduced to denote velocities and pressures on the macro-grid. The connection
between the micro-grid and the macro-grid variables is straight-forward:

S. Blažič et al. / Applied Mathematical Modelling 38 (2014) 864–877 869
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Vði; kÞ ¼ vðiNf ; kÞ; ð47Þ
Pði; kÞ ¼ pðiNf ; kÞ: ð48Þ

Next, the steps of the above algorithm will be discussed in detail.

4.1. Step 1

Micro-grid variables q; a and m are defined by Eqs. (44)–(46) are valid on the CF characteristic. The slope of this charac-
teristic is determined by the actual velocity of the fluid. According to the proposed algorithm, the initial fluid velocity vðj; kÞ
is used to determine the slope of the characteristic CF connecting points T (located at ðj� f; kÞ) and P (located at ðj; kþ 1Þ).
The solutions of Eqs. (45) and (46) are

aðj; kþ 1Þ � aðj� f; kÞ ¼ 0; ð49Þ
mðj; kþ 1Þ � mðj� f; kÞ ¼ 0; ð50Þ

which means that the fluid properties m and a propagate along CF characteristic unchanged. Linear interpolation is used for
approximating the variables between the micro-grid points. Only the interpolation for aðj� f; kÞ is given here (the other vari-
ables are interpolated similarly):

aðj� f; kÞ ¼ faðj� 1; kÞ þ ð1� fÞaðj; kÞ: ð51Þ

Please note that the speed of sound a remains constant along the CF characteristic. Since the speed of sound is quite large,
the density change on the considered section of the CF characteristic of Eq. (44) is very small and the initial estimate of the
density q at the point P is

q̂ðj; kþ 1Þ ¼ qðj� f; kÞ ð52Þ

and so is on the entire section TP of the CF characteristic. In step 4 this initial prediction of the density will be corrected tak-
ing into account calculated value of pressure in Eq. (44). The dimensionless friction coefficient k on this section is calculated
using the fluid velocity vðj� f; kÞ which is obtained by the linear interpolation.

4.2. Step 2

The slope of the characteristics Cþ and C� is obtained by averaging the speed of sound and the fluid velocity on the sec-
tions ½i� 1; i� and ½i; iþ 1�, respectively:

�ajii�1 ¼
1
Nf

XNf�1

L¼0

aðj� L; kÞ�v jii�1 ¼
1
Nf

XNf�1

L¼0

vðj� L; kÞ; ð53Þ

�ajiþ1
i ¼ 1

Nf

XNf�1

L¼0

aðjþ L; kÞ�v jiþ1
i ¼ 1

Nf

XNf�1

L¼0

vðjþ L; kÞ: ð54Þ

Using the slopes obtained by average velocities the characteristics Cþ and C� (i.e. points R and S) can be determined and
the coefficients of the macro-grid equations, valid on these characteristics, are obtained by averaging the micro-grid vari-
ables a; k, and q. The averaged coefficients are

�uRP ¼ aqjPR; ð55Þ
�uSP ¼ aqjPS ; ð56Þ
�ua

RP ¼ aqg sinðaÞjPR; ð57Þ
�ua

SP ¼ aqg sinðaÞjPS ; ð58Þ

�uk
RP ¼

1
2D

aqkjPR; ð59Þ

�uk
SP ¼

1
2D

aqkjPS : ð60Þ

Since the best predictions of a;q and k remain constant on the CF characteristic, the average on sections RP and SP can be
replaced by the average on sections RT and TS, respectively.

4.3. Step 3

Using the averaged coefficients, the macro-grid Eqs. (42) and (43) can be integrated. Several methods will be studied here.
They are given in the following.

870 S. Blažič et al. / Applied Mathematical Modelling 38 (2014) 864–877
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4.3.1. Euler method
Euler method is a simple explicit integration method where the function values on the integration interval are replaced by

their initial values. In our case this applies to the term v jvj in Eqs. (42) and (43) yielding

Pði; kþ 1Þ � Pði� n; kÞð Þ þ �uRP V i; kþ 1ð Þ � V i� n; kð Þð Þ þ �ua
RP þ �uk

RPV i� n; kð Þ j V i� n; kð Þ j Dt ¼ 0; ð61Þ

Pði; kþ 1Þ � Pðiþ w; kÞð Þ � �uSP Vði; kþ 1Þ � Vðiþ w; kÞð Þ � �ua
SP � �uk

SPVðiþ w; kÞ j Vðiþ w; kÞ j Dt ¼ 0; ð62Þ

where Pði� n; kÞ;Vði� n; kÞ; Pðiþ w; kÞ, and Vðiþ w; kÞ are obtained by linear interpolation similarly as in Eq. (51).
Eqs. (61) and (62) represent a system of two equations with two unknowns (Pði; kþ 1Þ and Vði; kþ 1Þ) which can be

solved analytically yielding

Pði; kþ 1Þ ¼ 1
�uRP þ �uSP

�uSPPði� n; kÞ þ �uRPPðiþ w; kÞ � �uRP �uSPVðiþ w; kÞ þ �uRP �uSPVði� n; kÞð

þ ð�uRP �ua
SP � �uSP �ua

RPÞDt þ �uRP �uk
SPVðiþ w; kÞ j Vðiþ w; kÞ j Dt � �uSP �uk

RPVði� n; kÞ j Vði� n; kÞ j Dt
	

ð63Þ

Vði; kþ 1Þ ¼ 1
�uRP þ �uSP

Pði� n; kÞ � Pðiþ w; kÞ � þ�uRPVði� n; kÞ þ �uSPVðiþ w; kÞ � ð�ua
RP þ �ua

SPÞDt



� �uk
RPVði� n; kÞ j Vði� n; kÞ j Dt � �uk

SPVðiþ w; kÞ j Vðiþ w; kÞ j Dt ð64Þ

The solutions for the inlet and the outlet points are a bit different – the boundary conditions must be taken into consid-
eration. For the inlet point only the C� characteristic (Eq. 62) is used for i ¼ 0 yielding

Vð0; kþ 1Þ ¼ Pð0; kþ 1Þ
�uSP0

� Pð0þ w; kÞ
�uSP0

þ Vð0þ w; kÞ � g sinða0ÞDt � �kSP0 Vð0þ w; kÞ j Vð0þ w; kÞ j Dt; ð65Þ

where

kSP0 ¼
1

2D
�kjP0

S : ð66Þ

P0 is the point at the inlet at the moment t ¼ ðkþ 1ÞDt and a0 is the inclination of the pipeline at the inlet.
For the outlet point only the Cþ characteristic (Eq. 61) is used yielding

VðNr ; kþ 1Þ ¼ PðNr � n; kÞ
�uRPN

� PðNr ; kþ 1Þ
�uRPN

þ VðNr � n; kÞ � g sinðaNÞDt � �kRPN VðNr � n; kÞ j VðNr � n; kÞ j Dt; ð67Þ

where

kRPN ¼
1

2D
�kjPN

R ð68Þ

and PN is the point at the outlet at the moment t ¼ ðkþ 1ÞDt while aN is the inclination of the pipeline at the outlet.

4.3.2. Trapezoidal method
Using the trapezoidal method the term v j v j is replaced by Vði� n; kÞ j Vði� n; kÞ j þVði; kþ 1Þ j Vði; kþ 1Þ jð Þ=2 and

Vðiþ w; kÞ j Vðiþ w; kÞ j þVði; kþ 1Þ j Vði; kþ 1Þ jð Þ=2 for the Cþ and the C� characteristic, respectively. Two nonlinear equa-
tions are obtained and since they have no analytical solutions, an iteration should be used. However if the term v jv j is re-
placed by sign Vði; kÞð ÞV2 a system of two quadratic equations is obtained, which can be solved analytically and has two
solutions. However only for one of them Vði; kþ 1Þ has the same sign as Vði; kÞ and this solution shall be used. The solutions
are given in Appendix A.

4.3.3. Approximative trapezoidal method
We denote fluid velocities in points R, P and S by VR;VP and VS respectively. With this method the term v jvj is first re-

placed by signðVRÞV2. Applying the trapezoidal method V2 is replaced by ðV2
R þ V2

PÞ=2 for the Cþ characteristic. Then VP is
replaced by VR þ DV and the quadratic term ðDVÞ2 is neglected. This results finally in

vjv j 	 signðVRÞV2 ¼ signðVRÞ V2
R þ ðVR þ DVÞ2

� �
=2 	 signðVRÞðV2

R þ VRVPÞ ¼ jVRjVP : ð69Þ

Similarly for the C� characteristic the term vjv j is replaced by jVSjVP . In such way a system of two linear equations is ob-
tained and the solutions are given in Appendix B.

4.4. Step 4

In the previous step, pressures and velocities were obtained on the macro-grid and will be now interpolated to obtain
their values on the micro-grid:
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pðj; kÞ ¼ 1� j� iNf

Nf

� �
Pði; kÞ þ j� iNf

Nf
Pðiþ 1; kÞ; iNf 6 j < ðiþ 1ÞNf ; ð70Þ

vðj; kÞ ¼ 1� j� iNf

Nf

� �
Vði; kÞ þ j� iNf

Nf
Vðiþ 1; kÞ; iNf 6 j < ðiþ 1ÞNf : ð71Þ

Having the values of the pressure on the micro-grid, the density along the micro-grid can be calculated again (the rough
prediction of the density was calculated in step 1, Eq. (52)) from Eq. (44):

qðj; kþ 1Þ ¼ qðj� f; kÞ þ pðj; kþ 1Þ � pðj� f; kÞ
a2ðj� f; kÞ : ð72Þ

4.5. Stability of the algorithm vs. numerical diffusion

As already said, the stability aspect is extremely important when choosing an appropriate spatial resolution. The spatial
resolutions of both grids, Dx and dx, respectively, should be chosen large enough (Eqs. 38 and 39) to meet the requirement of
the Courant–Friedrichs–Lewy condition. As a consequence, variables n;w, and f never exceed 1. In order to calculate the vari-
ables at t ¼ ðkþ 1ÞDt, the values at t ¼ kDt on the corresponding characteristics are needed. The latter are obtained by means
of interpolation which induces numerical diffusion. The numerical diffusion is less obvious when the variables n;w, and f are
closer to 0 or to 1.

In multi-batch operation with fluids having different speeds of sound the macro-grid points for calculating pressures and
velocities are chosen in accordance with the highest speed of sound. If the speed of sound of a particular fluid is around a half
of the maximal speed of sound, the numerical-diffusion effect is strongest. Similarly, on the micro-grid the numerical diffu-
sion is strongest if the current velocity of the fluid is around a half of the maximal expected fluid velocity. This influences the
simulated values of density, viscosity and speed of sound along the pipeline.

In conclusion, the diffusion effect is strongest when the algorithm is far from the stability boundary. When the velocity
increases, the numerical diffusion is lower, but the algorithm approaches instability boundary.

5. Validation of the model

The proposed model was validated on a real pipeline with the following data: length of the pipeline Lp ¼ 9854 m, diam-
eter D ¼ 0:2065 m, roughness kR ¼ 0:118 mm, and inclination a ¼ �0:00256 rad. The dynamical properties of the model can
be analysed during batch changes, so the data were recorded in an operation phase where the batch changed twice. The
speeds of sound a for the three batches were 1113.5, 985.4, and 916.6 m/s, while the kinematic viscosities m were 0.72,
0.52, and 0.70 mm2/s, respectively.

In order to simulate the pipeline, the initial and the boundary conditions are also needed as already discussed in Section 2.
Due to operational reasons the pipeline must be stopped before and after a batch change. At the beginning of the experiment,
the pipeline was was not running. It was full of the first batch. The pressures were measured at the inlet and and the outlet of
the pipeline constantly. The initial measurements were pð0;0Þ ¼ 2:4648 � 106 N=m2 and pðLp;0Þ ¼ 2:6715 � 106 N=m2. The
linear profile of the initial pressure is assumed, so the initial conditions for the simulation are:

� pðx; 0Þ ¼ pðLp;0Þ x
Lp
þ pð0;0Þð1� x

Lp
Þ,

� vðx;0Þ ¼ 0 m/s,
� qðx;0Þ ¼ 831:42 kg=m3,
� aðx; 0Þ ¼ 1113:5 m/s, and
� mðx;0Þ ¼ 0:72 mm2/s.

Note that the arguments of all the functions in this section are x and t (and not i; j, and k).
The following boundary conditions will be used in the simulation:

� the measured pressure at the pipeline inlet pð0; tÞ (shown in Fig. 2 with the blue line),
� the measured pressure at the pipeline outlet pðLp; tÞ (shown in Fig. 2 with the red line),
� the measured density at the pipeline inlet qð0; tÞ (shown in Fig. 3 with the dashed line),
� speed of sound at the pipeline inlet að0; tÞ (defined with batch changes), and
� kinematic viscosity at the pipeline inlet mð0; tÞ (defined with batch changes).

The outputs of the simulation model are:

� the fluid speed at the pipeline inlet vð0; tÞ,
� the fluid speed at the pipeline outlet vðLp; tÞ, and
� the fluid density at the pipeline outlet qðLp; tÞ.
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All these three variables were also measured during the operation and now these measurements will be compared to the
simulation outputs.

In the simulation of the proposed multiscale method, the temporal resolution is chosen as Dt ¼ 0:44 s, the number of
macro-grid intervals was chosen to be Nr ¼ 20 (taking into account maximal speed of sound 1113.5 m/s and maximal ex-
pected velocity of the fluid 2.8 m/s) while the number of micro-grid intervals inside a macro-grid interval was Nf ¼ 400 (tak-
ing into account maximal expected velocity of the fluid 2.8 m/s). These settings guarantee stable simulation in the studied
case. All three proposed integration methods (Euler, trapezoidal, trapezoidal approximative) were used for simulation and
the results were practically the same (the differences between the responses of the three models were far below the mea-
surement noise). Consequently, the figures of responses show only one variable when referring to the multiscale method.
The proposed heterogenous multiscale method was compared to the classical one-scale method. Two settings for the
one-scale method were used: 20 intermediate intervals or points and 500 intermediate intervals or points. Fig. 3 shows
the time plots of the densities at the outlet of the pipeline. The measured output is depicted with the solid line, the multi-
scale-model response with the dotted line, and the one-scale-model response with the dash-dotted line. The batch changes
(1000 s to 5300 s and 14800 s to 19000 s) can be clearly seen. The integral square error criteria for the three models are
shown in Table 1. The table also also gives computational complexity of the algorithms in terms of the time needed to cal-
culate model response. The algorithms were implemented in Matlab and run on an Intel Xeon CPU 2.8 GHz computer with
1 GB of RAM. Note that calculation time of the proposed method is much shorter than in the case of the one-scale method
with 500 points. In the former case the complex equations for the velocity and the pressure (e.g. Eqs. (63) in (64)) are only
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Fig. 3. The time course of the density q at the inlet (black dashed line) and the outlet of the pipeline (measured – blue solid line; one-scale-model response
– red dash-dotted line; multiscale-model response – red dotted line). (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)
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Fig. 2. The time course of the pressures at the inlet and the outlet of the pipeline.
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calculated 20 times, while the simple equations for the other three variables are performed 8000 times. In the latter case the
complete model has to be evaluated 500 times. Thus a huge difference between the calculation time is explained. While the
model response of the proposed multiscale simulation method corresponds very well to the measured data (see Table 1),
the results of the classical one-scale method with 20 points exhibit smoothing of the batch flanks due to numerical diffusion.
The numerical diffusion is so high that the pipeline is stopped before the simulated batch flank has reached the outlet of the
pipeline, causing a step in the time course of the simulated density q. Even if the number of inner points is increased
significantly (from 20 to 500, which increases the computational load dramatically – from 10 min to 69 h), the numerical
diffusion can not be eliminated as can be seen in Fig. 4 depicting a detail of the batch transient phase.

Table 1
The comparison of the three algorithms for the simulation of the pipeline (e is the modelling error – the difference between the
measured and the simulated density at the pipeline outlet, Tfin is the simulation time).

one-scale method one-scale method multiscale method
(20 points) (500 points) (20x400 points)

R Tfin

0 e2ðsÞds 8:08 � 106 5:89 � 105 1:29 � 105

½kg2s=m6�
Calculation time 10 min 69 h 48 min
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Fig. 4. A detail of the outlet density time plot (measured – blue solid line; one-scale-model response with 20 points – red dash-dotted line; one-scale-model
response with 500 points – red dashed line; multiscale-model response – red dotted line). (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)
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Fig. 5. The time plots of the fluid velocities at the inlet of the pipeline: measured (blue), multiscale-model response (red).
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In Figs. 5 and 6 the time courses of the fluid velocities at the inlet and the outlet of the pipeline are shown. Since the veloc-
ity measurements are very noisy, only the results of the proposed mutliscale method are shown to improve the legibility of
the figure. In Fig. 7 some details of Fig. 5 are depicted, where the transient phases can be seen in detail. Very good agreement
between the measured data and the proposed model response can be seen (the model output lies within the measurement
noise of the measured signal when the pipeline is not stopped).

6. Conclusion

A model of the pipeline was derived which is suitable for multi-batch driven pipelines. The model is a set of nonlinear
partial differential equations and the method of characterisctics is used to transform them into a set of ordinary differential
equations defined on different domains. Due to significant difference between the fluid velocity and the speed of sound the
resulting model is stiff and a method similar to the multiscale methods for stiff ordinary differential equations was devel-
oped. Results of the simulations show that the method is more suitable than the classical one-scale method with respect
to numerical diffusion while also being considerably quicker if similar quality of results is wanted. Three integration meth-
ods (Euler, exact trapezoidal, approximative trapezoidal) were used to solve the set of ordinary differential equations. The
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Fig. 6. The time plots of the fluid velocities at the outlet of the pipeline: measured (blue), multiscale-model response (red).
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results of their application on a real problem are practically identical and very close to the measured data, so the conclusion
is that any of those methods is suitable for multibatch pipeline simulation.

Appendix A. The derivation of numerical solutions for the trapezoidal method

This appendix includes lengthy formulae for the trapezoidal method given in 4.3.2. Inner points:

Pði; kþ 1Þ ¼ sign V i; kð Þð Þ
�uk

RP þ �uk
SP

�A �uk
SPDt �uk

RP V iþ w; kð Þ � V i� n; kð Þð Þ
4Dt �uk

RP þ �uk
SP


 	 þ 1=4 �uk
SPDt �uk

RP V iþ w; kð Þ2 þ V i� n; kð Þ2
� � 

þ
ffiffiffiffiffiffi
W
p

�uk
RP �uSP � �uk

SP �uRP

 	
Dt �uk

RP þ �uk
SP


 	
!
þ 1

�uk
RP þ �uk

SP

A �uk
RP �uSP � �uk

SP �uRP

 	
2Dt �uk

RP þ �uk
SP


 	 þ
ffiffiffiffiffiffi
W
p

�uk
SPDt �uk

RP V iþ w; kð Þ � V i� n; kð Þð Þ
2Dt �uk

RP þ �uk
SP


 	
 

� �uk
RP �uSPV iþ w; kð Þ þ �uk

SPP i� n; kð Þ þ �uk
RPDt �ua

SP þ �uRP �uk
SPV i� n; kð Þ þ �uk

RPP iþ w; kð Þ � �uk
SPDt �ua

RP

!
; ðA:1Þ

Vði; kþ 1Þ ¼ 1
�uk

RP þ �uk
SPDt

signðVði; kÞÞ
ffiffiffiffiffiffi
W
p

� 2 �uRP � 2 �uSP

� �
� �uk

RPDtVði� n; kÞ � �uk
SPDtVðiþ w; kÞ

� �
; ðA:2Þ

where

W ¼ ��uk
RP �uk

SPDt2 V iþ w; kð Þ � V i� n; kð Þð Þ2 þ 4 �uRP
2 þ �u2

SP


 	2 þ 4signðVði; kÞÞ �uk
RP �uSP þ �uk

SP �uRP

 	

Vði� n; kÞð



þ Vðiþ w; kÞÞ2 �uSP �uk
SPVðiþ w; kÞ þ 2 �uk

RP �uRPVði� n; kÞ þ �uk
RP þ �uk

SP


 	
Pði� n; kÞ � Pðiþ w; kÞð Þ

þ � �uk
RP þ �uk

SP


 	
�ua

RP þ �ua
SP


 	
:
	
Dt ðA:3Þ

and

A ¼ �2Dt �uk
RPVði� n; kÞ � �uk

SPVðiþ w; kÞ

 	

; ðA:4Þ

Inlet point:

Wi ¼ �u2
SP þ 2 �uSP �uk

SPDtVð0þ w; kÞ þ �uk
SPDtPð0; kþ 1Þ � �uk

SPDtPð0þ w; kÞ � �uk
SP �ua

SPDt2
 	
signðVð0þ w; kÞÞ; ðA:5Þ

Vð0; kþ 1Þ ¼ �Vðiþ w; kÞ þ signðVð0þ w; kÞÞ�2 �uSP þ 2
ffiffiffiffiffiffiffi
Wi
p

�uk
SPDt

; ðA:6Þ

Outlet point:

Wo ¼ �u2
RP þ 2 �uk

RPDt �uRPVðNr � n; kÞ � �uk
RPDtPðNr ; kþ 1Þ þ �uk

RPDtPðNr � n; kÞ � �uk
RPDt2 �ua

RP


 	
signðVðNr � n; kÞÞ; ðA:7Þ

VðNr; kþ 1Þ ¼ �VðNr � n; kÞ þ signðVðNr � n; kÞÞ�2 �uRP þ 2
ffiffiffiffiffiffiffiffi
Wo
p

�uk
RPDt

: ðA:8Þ

Appendix B. The derivation of numerical solutions for the approximative trapezoidal method

This appendix includes lengthy formulae for the approximative trapezoidal method given in 4.3.3. Inner points:

Pði; kþ 1Þ ¼ 1
�uRP þ �uSP þ �uk

RP Vði� n; kÞj jDt þ �uk
SP Vðiþ w; kÞj jDt


 Pði� n; kÞ �uSP þ Pði� n; kÞ �uk
SP Vðiþ w; kÞj jDt



þ �uRPPðiþ w; kÞ þ �uRP �ua

SPDt � �uRP �uSPVðiþ w; kÞ þ �uRPVði� n; kÞ�uSP þ �uRPVði� n; kÞ �uk
SP Vðiþ w; kÞj jDt

� �ua
RPDt �uSP � �ua

RPDt2 �uk
SP Vðiþ w; kÞj j þ �uk

RP Vði� n; kÞj jDtPðiþ w; kÞ þ �uk
RP Vði� n; kÞj jDt2 �ua

SP

� �uk
RP Vði� n; kÞj jDt �uSPVðiþ w; kÞ

	
; ðB:1Þ

Vði; kþ 1Þ ¼ 1
�uRP þ �uSP þ �uk

RP Vði� n; kÞj jDt þ �uk
SP Vðiþ w; kÞj jDt


 Pði� n; kÞ � Pðiþ w; kÞ þ �uRPVði� n; kÞ � � �ua
RPDt � �ua

SPDt þ �uSPVðiþ w; kÞ

 	

: ðB:2Þ

Inlet point:

Vð0; kþ 1Þ ¼ Pði; kþ 1Þ � Pðiþ w; kÞ þ �uSPVðiþ w; kÞ � �ua
SPDt

�uSP þ �uk
SP Vðiþ w; kÞj jDt

; ðB:3Þ
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Outlet point:

VðNr ; kþ 1Þ ¼ �Pði; kþ 1Þ � Pði� n; kÞ � �uRPVði� n; kÞ þ �ua
RPDt

�uRP þ �uk
RP Vði� n; kÞj jDt

: ðB:4Þ
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